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A Soluble Model for Quantum Mechanical Dissipation 
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In order to derive the equations for dissipation and noise in a quantum 
mechanical system it is necessary to include the equations of motion of a 
suitably chosen bath interacting with the system. In this way the standard treat- 
ment arrives at an approximate master equation for the density matrix of the 
system, at the expense of a number of ad hoc assumptions. These assumptions 
are here scrutinized on the basis of an exactly soluble model. The conclusion is: 
the bath must obey certain specifications; the interaction must be weak; and the 
temperature must be so high that the interaction energy is within the classical 
domain rather than occurring in quanta. Some additional comments concerning 
dissipation in quantum mechanics are relegated to an appendix. 
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1. INTRODUCTION AND MOTIVATION 

Newton 's  classical equat ions of mot ion  can readily be supplemented by a 

term to account  for the friction. The concomitant  noise may be taken into 

account  by a Langevin term. Fo r  linear equat ions this gives a reasonable 

description. Fo r  nonlinear  cases this short-cut is not  uniquely defined and 

no reliable results can be obtained without  a more detailed study of the 

actual noise source, t~ In quan tum mechanics no short-cut is possible and 

it is necessary to include the cause of  damping and noise explicitly, 

al though the details of the mechanism may be immaterial.  Thus, apart  from 

the system of interest S, one has to include a bath B and an interaction 
between both. The total Hamil tonian  is 

HT = Hs + HB + HT (1) 
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One now has to solve the Schr6dinger equation for this combined system. 
The hope is that from this solution one may, at least in some approxima- 
tion, deduce an equation for S alone. 

The standard way to do this is as follows. (2) One takes as initial state 
of the total system a density matrix in the form of a product, 

pr(O)=ps(O) |  (2) 

where ps(0) is the initial state of S, and p~ the thermal equilibrium state 
of B. The total density matrix evolves according to 

pT(t) = e--i'HTpT(O ) ei'nT (3) 

The density matrix of S alone is obtained by averaging over B, 

ps(t) =TrB e- i 'mps(O)|  pB e ~ ~,HT (4) 

This defines a linear map p s ( 0 ) ~ p s ( t ) ,  which may be written sym- 
bolically 

ps(t) = Y-(t) ps(0) (5) 

where ~-- is a superoperator, i.e., an operator acting in the space of 
matrices. This map can be computed explicitly for one well-known soluble 
model, namely a harmonic oscillator interacting with a bath of oscillators 
through a bilinear nl .  (3) In this paper we present a second soluble model. 

In the absence of an exact solution, however, one has to resort to an 
expansion. For a short time At one may compute (3) to second order in the 
interaction and in this way one finds for (4) 

ps(At) = ps(0) + ~Jt ,Laps(0) + ...  (6) 

where ~ is a time-independent superoperator. From this one concludes 
that ps(t) obeys the differential equation 

tSs(t)= L~' Ps(t ) (7) 

However, this equation has been derived only at t = 0, starting from 
the initial condition (2). The crucial assumption is that it holds at all times, 
with the implication that ps(t) constitutes a semigroup whose infinitesimal 
generator is Sa. The idea is that, although during the first time interval At 
correlations will build up between Ps and PB, they will not affect the evolu- 
tion during the subsequent interval At. This is the repeated randomness 
assumption, also called molecular chaos, random phase, or Stosszahlansatz. 
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It is essential for statistical mechanics of nonequilibrium processes, but it 
is little understood. 

Thus the semigroup or Markov character is not derived but 
postulated. It is often argued that the bath variables vary rapidly, so that 
At can be taken long compared to the bath correlation times. Then the 
equilibrium distribution p~ is supposed to have time to be reestablished 
during At, and (6) may be used again. (This is the basis of the so-called 
"singular coupling method. ''t4) Unfortunately, the harmonic oscillator 
model shows that the argument is incorrect: fi'iction and noise arise f rom 
those bath oscillators that are in resonance with the system. The other 
oscillators give rise only to a modification of the frequency. 

The purpose of the present work is to get a better understanding of the 
approximations needed to obtain a semigroup description in the form (7). 
A model is constructed of a quantum mechanical particle that moves along 
a lattice of sites while interacting with a bath. Starting from the exact equa- 
tion, we shall find that (7) is approximately valid provided that (i) the bath 
is chosen suitably, (ii) the interaction with the bath is weak, and (iii) the 
temperature is so high that the quantized character of the interaction is 
immaterial. 

A difference with the harmonic oscillator model is that our system S 
has a continuous spectrum, so that there is no resonance. Yet it will turn 
out again that the high-frequency bath oscillators merely modify the 
Hamiltonian, while the dissipation is caused by the oscillators in the low- 
frequency region. 

2. T H E  M O D E L  A N D  ITS S O L U T I O N  

The system S is a particle which may reside in any one of a number of 
sites v, where v runs over all integers from - o r  to +or.  The Hilbert space 
is spanned by the orthonormal states 

Iv), 

A step operator s is defined by 

s l v ) = l v +  l), 

(vl v') = 6,,~, 

s - '  Iv)= I v - l )  

The operator S 1 1 = v ( s + s -  ) is hermitian. Its eigenfunctions, denoted by 
[q), are 

1 ~ e i r t  v 
l~)=(2rO,/2 I v ) (O~<r/<2rt) 
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The eigenvalues are cos r/. For  the system Hamiltonian we take 

Hs = / 2 S  (/2 = const >/0) (8a) 

Its matrix elements in the g-representation are 

(r/I Hs I~/') = / 2  cos t / 5 ( r / -  r/') 

The bath is taken to be an assembly of harmonic oscillators labeled n, 
frequencies k,,, step operators a~, a . .  excitation number N,,, 

HB=~k,,a.a, , ,  eigenvalues ~k,,N,, (8b) 
n n 

The k. are positive, but so far not otherwise restricted. 
For  the interaction we take 

H, = S Y~ v,,(a. + a*~) =- SB (8c) 
n 

with coupling constants v.. Here B is an abbreviated notat ion for an 
operator  referring to the bath alone. 

Ha- commutes with S and is therefore diagonal in the r/-representation: 

(hi n v  It/') = 5( r / - r / ' ){ /2  cos ~/+ n , }  

H, = • k.at~a. + (cos r/) E v,,(a. + at.) 
n n 

= E H,,,, (9) 
t l  

The initial density matrix (2) is 

pr (0)  = pS(0) I-I ( 1 -- e-Pk") e - PkJ.~n (10) 
t !  

fl is the reciprocal temperature of the bath. Hence (3) reduces to 

(r/I pT(t) It/') = (r/I ps(0) It/') e - 'a ' t  . . . .  , . . . .  .') 

xe -i,n..c~.B~aitH. (1 1 ) 

The second line is a product  of independent factors, 

H { e-itH"''(1 --e-#k') e-flk"a*"a"eitH""") (12) 
t !  
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Taking the trace over the bath yields 

(r/I ps ( t ) Iq ' )=  (ql ps(0)]1./') e -`0'r162176 . . . .  ,.) 

xl-- I (1 --e -~k") ~ (N , [  e-itH"'"e-Pk"at~a"eitHg"" IN,,) (13) 
n N .  

This expression is worked out in Appendix A, with the result 

(r/I ps(t) It/')= (r/I ps(0) 117') e -ia'r176 . . . .  ,'1 
X e i F ( t ) ( c ~ 1 7 6  - G ( r ) ( c ~ 1 7 6  (14) 

where 
~_~_( sin k . t )  

F(t) = t 
n n 

G(t)= Z v ~ ( 1 - c o s  k . t ) c o t h  ilk.2 

This is the explicit form of (5). 

(15a) 

(15b) 

3. THE COEFFICIENTS F AND G 

Does the solution obey a differential equation (7)? Differentiating (14) 
and restoring the operator notation, one gets 

~s(t) = - i (2 [S ,  ps(t)3 + iF(t)[S 2, ps(t)3 

- G(t){S2ps(t)  - 2Sps( t )S  + ps(t) S z } (16) 

This differential equation is not, however, of the desired type (7) because 
P and G depend on time. The initial time has a special role owing to the 
initial condition (2), (10). We shall show that after an initial transient both 
P and G become constants. 

At this point it is necessary to suppose that the k, lie very dense on 
(0, ~) .  Define a strength function g(k) by 

g( k ) zlk = Z vZ. 
k < k n < k  + ztk 

Then (15) may be written 

F ( t ) = f o g ( ~ k k ) ( t - ~ ) d k  (17a) 

G(t )= I ~~ g(k) ( 1 - c o s  kt) coth ~ dk (17b) --U- J0  Z 
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It is clear that g(k)/k must be integrable, to avoid infrared and ultraviolet 
divergences. This is a restriction on the bath. More  specifically I suppose 
that g(k) has a linear region, that is, there is a constant ko such that with 
sufficient approximation 

g(k)=?k (? = const, k <ko)  (18) 

Consider F(t) for t obeying 

kot>>2n (19) 

Then for k > k o one may omit sin kt, so that 

fog(k ~ko sin kt F(t)=t ---~-- dk - ), jo k dk (20a) 

7~ - Ft -- ), ~ (20b) 

Hence F(t) becomes proport ional  to t, apart  from a constant,  which is due 
to the transient and is called "initial slip." From (20) one sees that the slip 
is a small correction to F(t) when t obeys (19). 

Next consider G(t) given by (17b): 

G(t)=? I]~ l-c~ ktc~ fl-ff dk + fk] ~z)c~ fl~k2 

In addition to (19) we suppose 

flko ~ I (21) 

and may then write 

2Y f~~ l-c~ dk ~ g(k) 
G ( t ) = ~ -  k2 + o - - ~ - c o t h  dk 

= ~- ~ t - + coth dk 

=--t+A 

A is a constant given by 

~'g(k) c o t h ~  ~ 1 ] f, A dk 
oo ( k 2 fl k2J 

(22) 

(23) 
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It represents again an initial slip and is a small correction when (19) is 
obeyed. 

The right-hand side of Eq. (16) consists of three terms. The first one 
represents the motion of the free system. The second term is also a com- 
mutator and corresponds therefore to a Hamiltonian evolution. From (20) 
one sees that it involves all bath oscillators: the high-frequency oscillators 
(beyond ko) merely have the effect of modifying the Hamiltonian, just as in 
the harmonic oscillator model. In the third term the coefficient (~(t)= n~,lfl 
involves only the oscillators in the low-frequency region. This term 
represents damping, as can be seen from (14): it kills all off-diagonal 
elements of (ql Ps Iq'). (The diagonal elements are strictly constant because 
[HT, S] =0.)  

4. T H E  M A R K O V  C H A R A C T E R  

The conclusion is that, starting from the initial state (2), there is a 
transient time ~9 after which 

I~s = - i r H s ,  Ps] + iFr $2, Ps] + 7  { 2 S p s S -  S Z p s - p s  $2 } (24) 

It follows from (19) that one must have ~q> 27z/ko; that is, the transient is 
at least as large as the period at which the linear region (8) ends. In addi- 
tion, the choice of ko is subject to (21), which implies 

~9 > h/~cT (25) 

that is, the transient cannot be less than the period at which quantum 
mechanics becomes noticeable. The former restriction is not fundamental as 
long as we are free to choose a suitable bath, but the restriction (25) is 
independent of the bath; it is a formulation of the general rule that quan- 
tum noise cannot be white. 

The fact that ps(t) obeys (24) for t > ~9 does not prove the semigroup 
property. This property means that (supposing 0 < tt < t2), one can obtain 
ps(t2) not only directly from ps(0), but also by first fnding ps(tl) and then, 
starting from this as initial value, applying the evolution equation during 
t 2 - t l .  According to (14), that requires 

F( tz )=F( t l )+F( t z - t l ) ,  G( t z )=G(t l )+G(t2- t l )  

The expressions(20) and (22) do not obey this requirement. All one 
can say is that it is obeyed if not only tt and t2 are large compared to ~9, 
but one must also have t2- t~ ~>~. Hence the semigroup property is 
approximately satisfied on a coarse-grained time scale. 
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More precisely, one should subdivide the time axis into intervals 
At>> ~9 and then apply the linear approximation (6) successively to each 
interval. Of course, this discretization causes an error, which is large unless 
Ps varies relatively little during At. According to (24), this requires 

12 At,~ 1, I ' z t t ~ l ,  (rcy//~) zlt ,~ 1 (26) 

The first inequality can be defused by going to the interaction representa- 
tion. The second one gives, according to (19), y,~ 1, if one utilizes the 
order-of-magnitude estimate I ' ~ T k o .  The third one, according to (25), 
gives the same. The conclusion is that the interaction must be weak. 

One way of obeying all these conditions is provided by the so-called 
2zt limit. One scales down the interaction coefficients v, by a factor 2, 
extends the time considered, 

v , = 2 v * ,  g=22g  *, t = 2 - z t  * 

and takes the limit 2 --* 0 with fixed g*, t*. Applying this limiting procedure 
to (17), one finds painlessly 

F(t) ---, I t ,  G(t) ~ (ny/fl)t  

However, this device works so smoothly because it ignores the physical 
reality. It treats the interaction as infinitely weak and the long-time limit 
has the effect that only low-frequency oscillators of the bath matter. As a 
consequence one is always in the linear region (18) and all relevant 
oscillators are classical. The terms in (20) and (22) displaying the initial 
slip vanish in this limit, although of course in reality they are not zero. 

5. THE S T A N D A R D  A P P R O X I M A T I O N  M E T H O D  

In practical cases, of course, no exact solution is available and the 
master equation (7) can be obtained only by an approximation method, as 
described in Section 1. In order to test that method we apply it here to 
the present model. The necessary algebra has been performed in ref. 1, 
Section XVII.3. We outline the result. 

Our Hamiltonian (1) is specified in (8). The operators B and S in the 
two subspaces have Heisenberg representations, which at time - z  are 

B ( - ' r )  = e-i~H~Be i~H", S ( - T )  = S 
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One then evaluates (3) to second order in the interaction, takes the trace, 
and differentiates, with the result 

15s = - -  i[Hi, Psi 

-�89 dr<[B,B(-T)]>~ ps].] 

-�89 d~ <[B, B(--T)] + >~ [S, [S, 0s]] (27) 

The subscript + indicates the anticommutator, and < .-- >~ denotes equi- 
librium average. 

<.- .  > r  

According to ref. 1, p. 449, one has 

<[B, B ( - ~ ) ]  >" = - 2 i l o  g(k) sin k~ dk 

< [B, B( - T ) ]  + >e = 2 g(k) cos k~ coth(�89 dk 

Substitution in (27) yields 

~s  = -ir~[ S, 0s] 

{So o ;:o } +i dr g(k) sinkrdk (S2ps-Ps $2) 

- {  I ~ d~ Io g(k) c~ kz c~189 dk} (S2ps- 2SpsS + psS2) 

=-i(2[S, ps]+i dk [$2, ps] 

+ { Tr ~ g(k ) coth( �89 ) ~5(k ) dk } (2SpsX- X2ps - Ps $2) 

In terms of our previous notation this is (24). 
Thus for the present model the standard approximation method yields 

the desired master equation. The transient has been eliminated by the bold 
step of extending in (27) the integrations over z to infinity rather than to t. 
Moreover, the equation has been derived only for the special initial condi- 
tion (2) and subsequently the semigroup property is enforced by means of 
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the repeated randomness assumption. Finally, the fact that the approxima- 
tion method produces the correct master equation is special for the present 
model; in more general cases the resulting master equation is unacceptable 
as it may lead to a ps(t) that is not  positive definite; see Appendix B. 

A P P E N D I X  A. D E R I V A T I O N  OF ( 1 4 )  

In order to work out (13) first note from (9) that 

n,. , ,  = k,,(a~ + u,,)(a,, + u,,) - k,,u2, 

with u , = ( v , , / k , , ) c o s r  1, u , ,=(v, , /k , , )cost l ' .  For  the quanti ty { . . .  } in (12) 
we may write (omitting the label n) 

(1 - e -ak) e ik'~ ,,'-5~ 

~, = Tr e - ik t (at  + u)(cJ -t- U ) e  - f l ka tae i k t (a t  + u')(a + u')  

Using a sequence of operator  identities, the reader should be able to trans- 
form this into 

3 = e - i("2 - ,,,2~ sinktT r e -/lkata 

x exp{u ' [a (e  i k ' -  1 ) - a t ( e  - i k ' -  1)] 

+ u[a( 1 - e i*') - a*(1 - e - ik,)] } 

On writing the trace as a sum over the eigenstates of ata, one finds for it 

[ l - exp( - flk ) ] exp [ - (u - u')2 ( 1 -  cos k t  ) coth fl~k2 ] 

Collecting results, one obtains (14), (15). 

A P P E N D I X  B. THE  POSIT IV ITY C O N D I T I O N  

The mapping #-  in (9) must conserve not only the trace and the 
hermiticity of the density matrix, but also the positive-definiteness. It has 
been proved ~5~ that a necessary and sufficient condition is that Y has the 
form 

~--p = ~ A~pA~ (Bla)  

where the A~ are any set of operators obeying 

~A~A~=I (Bib) 



A Soluble Model for Quantum Mechanical Dissipation 309 

Of course the exact operator J -  in (14) conserves positivity, but it is not 
manifest that it is actually of the form (B1). The first two factors are no 
problem: they may be combined into 

(ql e -  

Subsequently we may set 

i,O,S + iFS2ps( O ) e ia ts -  iFS  2 I?l, ) 

A ,  = B=e-~a's2 + i F S  2 

and it remains to choose the operators B= such that 

(r/] ~ B=pB*~ [q ')= (r/I P Iq') e-a(r176 . . . .  ,'): (B2) 
ct 

With the aid of the identity 

e 6(cos,-cos,,)2= 1 fo~ e-=2 &t e 2i=',/-~(c~176 
v/-~ _~ 

it is clear that (B2) is obeyed on choosing 

B= = n -  1/2e- ~2/2ei~',/-~s 

and replacing the sum over ~ with an integral. 
From the general condition (B1) it can be deduced that, i f a  differential 

equation (7)  exists, it must have the form (first given by Kossakowski (6)) 

~LPps i[K, Psi + ~  (V~ps V ~ - ~  t ~ t = - ~_ V~ V=p s V~) - -  ~_Ps V~ 

K is a hermitian operator and determines the reversible Schr6dinger-like 
evolution. The V= are any set of operators and determine the irreversible, 
dissipative evolution. 

The difficulty mentioned in Section 5 is that the usual result, based on 
standard second-order approximation in the strength of the coupling, does 
not have this form and is therefore unacceptable. (~'7J The reason why our 
present model does not suffer from this flaw is that our Hs and HI com- 
mute. This model is therefore not able to shed any light on the problem of 
nonpositivity. 
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